9 research outputs found

    A compendium of Technologies, Practices, Services and Policies for Scaling Climate Smart Agriculture in Odisha (India)

    Get PDF
    Stakeholders engaged in agricultural research for development (AR4D) are increasingly tackling risks associated with climate change in smallholder systems. Accordingly, development and scaling of climate-smart agriculture (CSA) are one of the priorities for all the organizations, departments and ministries associated with the farm sector. Having a ‘one-stop-shop’ compiled in the format of a compendium for CSA technologies, practices and services would therefore serve a guide for all the stakeholders for scaling CSA in smallholder systems. Bringing out a Compendium on Climate-Smart Agriculture (CSA) for Odisha, India was therefore thought of during the workshop on ‘Scaling Climate-Smart Agriculture in Odisha’ organized at Bhubaneswar on 18-19 July 2018 by International Rice Research Institute (IRRI) in collaboration with Department of Agriculture (DoA) & Farmers’ Empowerment, Indian Council of Agricultural Research-National Rice Research Institute (ICAR-NRRI), Orissa University of Agriculture and Technology (OUAT) & International Maize and Wheat Improvement Center (CIMMYT) under the aegis of CGIAR Research program on Climate Change, Agriculture and Food Security (CCAFS). The main objectives to bring forth this compendium are: to argue the case for agriculture policies and practices that are climate-smart; to raise awareness of what can be done to make agriculture policies and practices climatesmart; and to provide practical guidance and recommendations that are well referenced and, wherever possible, based on lessons learned from practical action. CSA programmes are unlikely to be effective unless their implementation is supported by sound policies and institutions. It is therefore important to enhance institutional capacities in order to implement and replicate CSA strategies. Institutions are vital to agricultural development as well as the realisation of resilient livelihoods.They are not only a tool for farmers and decision-makers, but are also the main conduit through which CSA practices can be scaled up and sustained. The focus in this compendium is on CSA and it’s relevant aspects, i.e., (i) technologies and practices, (ii) services, (iii) technology targeting, (iv) business models, (v) capacity building, and (vi) policies. The approaches and tools available in the compendium span from face-to-face technicianfarmer dialogues to more structured exchanges of online and offline e-learning. In every scenario it is clear that tailoring to local expectations and needs is key. In particular, the voice of farmers is essential to be captured as they are the key actors to promote sustainable agriculture, and their issues need to be prioritized. CSA practices are expected to sustainably increase productivity and resilience (adaptation), reduce Greenhouse Gases (mitigation), and enhance achievement of national food security along with sustainable development goals. CSA is widely expected to contribute towards achieving these objectives and enhance climate change adaptation. CSA practices have to be included in State’s Climate Policy as a priority intervention as the state steps up efforts to tackle climate change. Furthermore, emphasis shoud be laid on CSA training for a sustainable mode to enhance CSA adoption in the state hence the relevance of developing this document. The adaption of climate related knowledge, technologies and practices to local conditions, promoting joint learning by farmers, researchers, rural advisor and widely disseminating CSA practices, is critical. This compendium brings together a collection of experiences from different stakeholders with background of agricultural extension and rural advisory services in supporting CSA. The contributions are not intended to be state-of-the art academic articles but thought and discussion pieces of work in progress. The compendium itself is a ‘living‘ document which is intended to be revised periodically

    Scaling Climate-Smart Agriculture in Bangladesh: Practices, Policies and Institutions

    Get PDF
    The International Rice Research Institute (IRRI) jointly organized a workshop with International Maize and Wheat Improvement Center (CIMMYT) and Bangladesh Rice Research Institute (BRRI) with supported by Climate Change, Agriculture and Food Security (CCAFS) on “Scaling Climate-Smart Agriculture in Bangladesh: Practices, Policies and Institutions” on March 20, 2019 at CIRDAP, Dhaka, Bangladesh. A total of 47 participants from the government, policy institutes, international organizations, academia and the civil society participated. Officials from Department of Agriculture Extension, Govt. of Bangladesh, Water Development Board, Bangladesh, Climate & Clean Air Coalition, BRAC University, Bangladesh, International Food Policy Research Institute, International Fertilizer Development Center, International Council for Research in Agroforestry, along with several other International and National organizations working on the above topic were present in this program

    A global analysis of the impact of zero‐tillage on soil physical condition, organic carbon content, and plant root response

    No full text
    Food security involves the sustainable utilization of soil and land resources. Zero‐tillage (ZT) practice is a proponent of better resource utilization, to improve soil physical condition, and a potential sink to atmospheric carbon. However, the impact varies across climates, over the ZT history, cropping systems, and soil depths. A meta‐analysis was performed, based on 4,131 paired data from 522 studies spread globally, to evaluate the effect of ZT in comparison to conventional tillage, on soil physical condition (bulk density; mean weight diameter of aggregates; field capacity water content; and steady‐state infiltration rate), soil organic carbon (SOC) content, and the root response (root length density). Zero‐tillage significantly improved mean weight diameter of aggregates and field capacity water content at surface and subsurface layers by 19–58% and 6–16%, respectively, and resulted in no change in bulk density in either of the layers, but infiltration rate increased by 66%. Surface 0‐ to 5‐ and 5‐ to 10‐cm layers had significantly higher SOC content under ZT, whereas in other layers, the SOC content either reduced or did not change, resulting in a small and insignificant variation in the SOC stock (~1.1%) in favor of ZT. The root length density improved by ~35% in ZT only at 0‐ to 5‐cm soil depth. Effect of climate, soil type, or cropping system could not be broadly recognized, but the impact of ZT certainly increased over time. Improvements in soil aggregation and hydraulic properties are highly convincing with the adoption of ZT, and therefore, this practice leads to the better and sustainable use of soil resources

    A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production

    Get PDF
    Abstract Alternative tillage and rice establishment options should aim at less water and labor to produce similar or improved yields compared with traditional puddled-transplanted rice cultivation. The relative performance of these practices in terms of yield, water input, and economics varies across rice-growing regions. A global meta and mixed model analysis was performed, using a dataset involving 323 on-station and 9 on-farm studies (a total of 3878 paired data), to evaluate the yield, water input, greenhouse gas emissions, and cost and net return with five major tillage/crop establishment options. Shifting from transplanting to direct-seeding was advantageous but the change from conventional to zero or reduced tillage reduced yields. Direct-seeded rice under wet tillage was the best alternative with yield advantages of 1.3–4.7% (p < 0.05) and higher net economic return of 13% (p < 0.05), accompanied by savings of water by 15% (p < 0.05) and a reduction in cost by 2.4–8.8%. Direct-seeding under zero tillage was another potential alternative with high savings in water input and cost of cultivation, with no yield penalty. The alternative practices reduced methane emissions but increased nitrous oxide emissions. Soil texture plays a key role in relative yield advantages, and therefore refinement of the practice to suit a specific agro-ecosystem is needed

    Agricultural labor, COVID-19, and potential implications for food security and air quality in the breadbasket of India

    No full text
    To contain the COVID-19 pandemic, India imposed a national lockdown at the end of March 2020, a decision that resulted in a massive reverse migration as many workers across economic sectors returned to their home regions. Migrants provide the foundations of the agricultural workforce in the ‘breadbasket’ states of Punjab and Haryana in Northwest India.There are mounting concerns that near and potentially longer-term reductions in labor availability may jeopardize agricultural production and consequently national food security. The timing of rice transplanting at the beginning of the summer monsoon season has a cascading influence on productivity of the entire rice-wheat cropping system. To assess the potential for COVID-related reductions in the agriculture workforce to disrupt production of the dominant rice-wheat cropping pattern in these states, we use a spatial ex ante modelling framework to evaluate four scenarios representing a range of plausible labor constraints on the timing of rice transplanting. Averaged over both states, results suggest that rice productivity losses under all delay scenarios would be low as compare to those for wheat, with total system productivity loss estimates ranging from 9%, to 21%, equivalent to economic losses of USD 674mto674 m to 1.48 billion. Late rice transplanting and harvesting can also aggravate winter air pollution with concomitant health risks. Technological options such as direct seeded rice, staggered nursery transplanting, and crop diversification away from rice can help address these challenges but require new approaches to policy and incentives for change

    Enabling smallholder farmers to sustainably improve their food, energy and water nexus while achieving environmental and economic benefits

    No full text
    Traditional cropping practices in the Eastern Gangetic Plains, South Asia, are resource intensive, requiring large inputs of water, energy and human labor. They are also inefficient, with relatively low productivity for the inputs used although the climate, soil and water resources of the region indicate that greater productivity is achievable. In on-farm experiments conducted across three countries (Bangladesh, India, Nepal) we compared the performance of traditional and improved management practices to understand which better facilitated the production of food-grain crops while reducing energy and water demands, thus improving the sustainability of cropping system energy requirements. Benefits of improved over traditional management practices included increases of up to 10% in crop grain yields; up to 19% in water productivity; up to 26% in energy productivity; and reductions of up to 50% in labor. These metrics combined to reduce the cost of production under improved management by up to 22% and to increase gross margins by up to 100% (although in most instances gross margins increased by 12–32%). CO2-equivalent emissions reduced by 10%–17% compared to traditional practices. The principles behind the improved management practices, which we demonstrate improve the food-energy-water nexus while concurrently promoting more sustainable use of energy resources, are applicable across smallholder farming systems throughout South Asia and in many emerging-economy countries. These improvements to traditional management practices combined with our approach of supporting farmers through the implementation of new methods has widespread applications and the potential to assist many countries transitioning to low-energy, sustainable food production

    Crop nutrient management using Nutrient Expert improves yield, increases farmers’ income and reduces greenhouse gas emissions

    No full text
    Reduction of excess nutrient application and balanced fertilizer use are the key mitigation options in agriculture. We evaluated Nutrient Expert (NE) tool-based site-specific nutrient management (SSNM) in rice and wheat crops by establishing 1594 side-by-side comparison trials with farmers’ fertilization practices (FFP) across the Indo-Gangetic Plains (IGP) of India. We found that NE-based fertilizer management can lower global warming potential (GWP) by about 2.5% in rice, and between 12 and 20% in wheat over FFP. More than 80% of the participating farmers increased their crop yield and farm income by applying the NE-based fertilizer recommendation. We also observed that increased crop yield and reduced fertilizer consumption and associated greenhouse gas (GHG) emissions by using NE was significantly influenced by the crop type, agro-ecology, soil properties and farmers’ current level of fertilization. Adoption of NE-based fertilizer recommendation practice in all rice and wheat acreage in India would translate into 13.92 million tonnes (Mt) more rice and wheat production with 1.44 Mt less N fertilizer use, and a reduction in GHG of 5.34 Mt CO2e per year over farmers’ current practice. Our study establishes the utility of NE to help implement SSNM in smallholder production systems for increasing crop yields and farmers’ income while reducing GHG emissions
    corecore